SUSY 2011 - Fermilab

Observing a light dark matter beam with neutrino experiments

Adam Ritz
University of Victoria

with P. deNiverville and M. Pospelov, 1107.4580

Direct probes of (very) light dark matter?

Direct probes of (very) light dark matter?

Light WIMPs - some early motivation

An older positron anomaly...

$$\Phi_{\rm obs} = (9.35 \pm 0.54) \times 10^{-4} \, \rm ph \, cm^{-2} \, s^{-1}$$

- 511 keV line, with diffuse source around the galactic center [INTEGRAL/SPI '03-'07].
- suggestive at the time of DM annihilation
 [...however a disk component now observed
 [INTEGRAL/SPI '08]].

Need "cold" positron source, E < 3 MeV [Beacom & Yuksel '05], motivating studies of MeV-scale DM, below the Lee-Weinberg bound [Boehm et al '03, Fayet '04,'07].

Light WIMPs - some early motivation

An older positron anomaly...

$$\Phi_{\rm obs} = (9.35 \pm 0.54) \times 10^{-4} \, \rm ph \, cm^{-2} \, s^{-1}$$

- 511 keV line, with diffuse source around the galactic center [INTEGRAL/SPI '03-'07].
- suggestive at the time of DM annihilation
 [...however a disk component now observed
 [INTEGRAL/SPI '08]].

Need "cold" positron source, E < 3 MeV [Beacom & Yuksel '05], motivating studies of MeV-scale DM, below the Lee-Weinberg bound [Boehm et al '03, Fayet '04,'07].

⇒ viable thermal relic density requires new annihilation channels through light states, i.e. light DM as part of a hidden sector.

Standard Model

Hidden Sector

Light WIMPs - some early motivation

An older positron anomaly...

$$\Phi_{\rm obs} = (9.35 \pm 0.54) \times 10^{-4} \, \rm ph \, cm^{-2} \, s^{-1}$$

- 511 keV line, with diffuse source around the galactic center [INTEGRAL/SPI '03-'07].
- suggestive at the time of DM annihilation
 [...however a disk component now observed
 [INTEGRAL/SPI '08]].

Need "cold" positron source, E < 3 MeV [Beacom & Yuksel '05], motivating studies of MeV-scale DM, below the Lee-Weinberg bound [Boehm et al '03, Fayet '04,'07].

⇒ viable thermal relic density requires new annihilation channels through light states, i.e. light DM as part of a hidden sector.

Standard Model

Hidden Sector

⇒ by inversion, light mediators allow direct production of DM at *low energy!*

Probing DM in a light hidden sector

Standard Model

Hidden Sector

$$\mathcal{L}_{med} = \sum_{n,k,l}^{n=k+l-4} rac{O_k^{(SM)} O_l^{(med)}}{\Lambda^n}$$

Generic interactions are irrelevant (dimension > 4), but there are three renormalizable "portals"

- Vector portal: $\mathcal{L} = -\frac{\kappa}{2} V^{\mu\nu} B_{\mu\nu}$
- Higgs portal: $\mathcal{L} = (-\lambda S^2 + \xi S)H^{\dagger}H$
- Neutrino portal: $\mathcal{L} = -y_{ij}\bar{L}_iHN_j$

MeV-scale DM

Classes of MeV-scale models

[Boehm et al '03; Fayet '04,'06; Pospelov, AR, Voloshin '07]

$$\frac{\Omega_{\rm DM}}{\Omega_{\rm m}} \simeq (2-4) \frac{1 \, \rm pbn}{\langle \sigma v \rangle_{\rm fo}}$$

$$\frac{\Phi_{511,\mathrm{DM}}}{\Phi_{511,\mathrm{tot}}} \sim \frac{\langle \sigma v \rangle_{\mathrm{gal}}}{10^{-40}\,\mathrm{cm}^2} \times \left(\frac{1\,\mathrm{MeV}}{m_{\mathrm{DM}}}\right)^2 \times \left(\frac{\Omega_{\mathrm{DM}}}{\Omega_{\mathrm{m}}}\right)^2$$

• U(1) mediator

- m_{DM} > m_V : s-wave annihilation, so can only explain 511 keV flux if a highly subdominant component of DM
- m_{DM} < m_V : A scalar DM candidate has p-wave annihilation, and is viable for $\kappa \sim 10^{-4}$ -10⁻³

Scalar mediator

- m_{DM} > m_{ϕ} : A fermionic DM candidate has p-wave annihilation and can be viable, but needs significant tuning to avoid limits from missing-energy K decays.
- m_{DM} < m_{ϕ} : Annihilation is suppressed, and would require O(1) mixing which is ruled out e.g. by K and B decays.

MeV-scale DM

Classes of MeV-scale models

[Boehm et al '03; Fayet '04,'06; Pospelov, AR, Voloshin '07]

$$\frac{\Omega_{\rm DM}}{\Omega_{\rm m}} \simeq (2-4) \frac{1 \, \rm pbn}{\langle \sigma v \rangle_{\rm fo}}$$

$$\frac{\Phi_{511,\mathrm{DM}}}{\Phi_{511,\mathrm{tot}}} \sim \frac{\langle \sigma v \rangle_{\mathrm{gal}}}{10^{-40}\,\mathrm{cm}^2} \times \left(\frac{1\,\mathrm{MeV}}{m_{\mathrm{DM}}}\right)^2 \times \left(\frac{\Omega_{\mathrm{DM}}}{\Omega_{\mathrm{m}}}\right)^2$$

- U(1) mediator
 - m_{DM} > m_V : s-wave annihilation, so can only explain 511 keV flux if a highly subdominant component of DM
 - m_{DM} < m_V : A scalar DM candidate has p-wave annihilation, and is viable for $\kappa \sim 10^{-4}$ 10^{-3}

Scalar mediator

- m_{DM} > m_{ϕ} : A fermionic DM candidate has p-wave annihilation and can be viable, but needs significant tuning to avoid limits from missing-energy K decays.
- m_{DM} < m_{ϕ} : Annihilation is suppressed, and would require O(1) mixing which is ruled out e.g. by K and B decays.

Probing DM in a light hidden sector

Standard Model

Hidden Sector

$$\mathcal{L}_{med} = \sum_{n,k,l}^{n=k+l-4} rac{O_k^{(SM)} O_l^{(med)}}{\Lambda^n}$$

Generic interactions are irrelevant (dimension > 4), but there are three renormalizable "portals"

• Vector portal: $\mathcal{L} = -\frac{\kappa}{2} V^{\mu\nu} B_{\mu\nu}$

[Holdom '86]

- Higgs portal: $\mathcal{L} = (-\lambda S^2 + \xi S)H^{\dagger}H$
- Neutrino portal: $\mathcal{L} = -y_{ij}\bar{L}_iHN_j$

NB: The vector mediator V can naturally be light (M << M_Z)

MeV DM coupled via the U(1) portal

$$\mathcal{L} = -\frac{1}{4}V_{\mu\nu}^2 - \frac{\kappa}{2}V_{\mu\nu}F^{\mu\nu} - \frac{1}{2}m_V^2V_{\mu}^2 + |D_{\mu}\chi|^2 - m_{\rm DM}^2|\chi|^2 + \cdots$$

$$\mathcal{L}_{\rm int} = -\kappa e V_{\mu} J_{\rm em}^{\mu}$$

V - production through mixing with EM current: $O(\kappa^2)$

DM candidate, coupled through U(1)'

- Viable thermal relic DM candidates at an MeV [Boehm et al '03, Fayet '04,'06; Pospelov, AR, Voloshin '07; Hooper & Zurek '08]. [NB: Weak-scale candidates of interest due to enhanced low-v annihilation [Finkbeiner & Weiner, '07; Pospelov, AR, Voloshin '07; Arkani-Hamed et al '08; Pospelov, AR '08].]
- For $m_{DM} < m_V$, the correct relic density fixes a specific relation between $\{\alpha', m_V, m_{DM}, \kappa\}$ [Pospelov, AR & Voloshin '07] and we also require perturbativity of the U(1) coupling α' (e.g. $\alpha' \sim \alpha$).

Experimental Sensitivity

Astrophysical Sensitivity (other than galactic annihilation)

- CMB ✗ as annihilation is p-wave [Padmanabhan & Finkbeiner et al '05;
- SN X due to thermalization in the core Slatyer et al '08]
- BBN X minimal impact for m > 1 MeV [Serpico & Raffelt '04]

Particle Physics Sensitivity (other than direct nuclear recoil)

- Correction to g-2 ✓ [Pospelov '08]
- Dark Force Searches, V→e+e-- X as Br(V →DM)~1
 [Bjorken et al. '09; Batell et al '09; Reece & Wang '09; MAMI '11, APEX '11, ...]
- in rare decays (eg Kaons)

 [Fayet '06, '09; Pospelov, AR & Voloshin '07]
- • ★ at colliders B-factories (O(ab⁻¹) datasets)
 • ★ [Borodatchenkova et al '06] LEP, LHC
 • ★ [see SUSY'11 talks by Harnik, Tsai, Tait]

and

Fixed targets/Neutrino detectors - this work!

Fixed target probes - Neutrino Beams

Fixed target probes - Neutrino Beams

Thus we can use the neutrino (near) detector as a dark matter detector, looking for recoil, but now from a relativistic beam.

Fixed target probes - Neutrino Beams

Thus we can use the neutrino (near) detector as a dark matter detector, looking for recoil, but now from a relativistic beam. E.g.

LSND

800 MeV protons
10²³ POT
30m to (~200m³)
mineral oil target

MiniBooNE

8.9 GeV protons
10²¹ POT
540m to (~300m³)
mineral oil target

Signatures

Characteristic DM elastic scattering signatures

These processes mimic neutral current elastic scattering of neutrinos, and thus can lead to an observable excess.

Background at LSND is ~300 Elastic Scattering events [LSND '01]

Background at LSND is ~300 Elastic Scattering events [LSND '01]

Production of η 's at MiniBooNE leads to a significant increase in mass reach

Better sensitivity, but (naive) background is ~ 6x10⁴ NC neutrino events [MiniBooNE '10]

Still have sensitivity at higher mass, but much lower S/B

[MiniBooNE '10]

Concluding Remarks

Summary

- A neutral hidden sector is an intriguing possibility, motivated by dark matter, RH neutrinos, SUSY breaking, ...
 - Allows for thermal relic DM in the MeV-GeV range
 - Models coupled via the vector portal (and others) can be tested at the luminosity frontier, particularly through fixed-target neutrino facilities.
 - Limits from LSND and MiniBooNE rule out a class of MeV-scale models motivated by the galactic 511 keV line.

Further tests

- Significant sensitivity to MeV-GeV scale new physics from neutrino sources: LSND, MiniBooNE, NuMI/MINOS, T2K, NOvA, CLEAR, ...
 - Increased mass range, different mediators, ...